全球进入空前的创新密集和产业变革时代,科学技术领域发生革命性突破的先兆愈加明显。信息技术向其它领域加速渗透和向深度应用发展,将引发以智能、泛在、融合为特征的新一轮信息产业变革,引领机械产品向智能化方向发展。增长模式深度调整的巨大压力,将促进新型环保节能技术、新能源技术加速突破和广泛应用,推动机械产品绿色化发展。同时,重大技术创新将更多地出现在学科交叉领域,各类技术之间的相互融合也将更加频繁,将会产生新的技术系统变革、重大学科突破以及新一轮科技革命及产业革命。可以预计,在今后的5~20年,这些技术将发生重大创新突破,并将有可能引发机械工程技术的巨大变革,推动机械工业向绿色化、智能化、服务化方向发展。
未来20年是我国制造业实现由大变强,确立在世界领先地位的关键历史时期,中国机械工程学会组织编写了《中国机械工程技术路线图》,不仅提出11个领域的技术路线图,而且在其基础上凝练出若干能影响到机械工业,以至制造业发展进程的重大、前沿性、标志性的8大技术问题。
1 复杂系统的创意、建模、优化设计技术
建模、仿真、优化及协同管理是机械设计技术不变的核心和关键。复杂机电系统拥有复杂的层次结构,组成复杂系统的各分系统、子系统与元素之间既相对独立,又相关联,上级系统拥有下级系统不具备的属性和功能。复杂机电系统往往是机、电、液、控等多领域物理与信息技术的高度融合,具有多层次、多目标、多时空、高维度、非线性、不确定性、开放性等特征。随着计算、通信、感知、控制等技术的相互融合,复杂机电系统将进一步呈现出智能化、网络化、复合化、分布式和嵌入式等技术特征。
进入21世纪以来,复杂机电产品所要满足的需求层次越来越丰富和多样,如何有效地将用户的文化与情感需求融入到复杂机电产品的创意设计之中,是需要人们继续探求的课题。欧美日韩等国制定了符合地域文化与情感的设计发展规划和产业集群模式,美国建立了以技术和互联网文化为代表的硅谷、欧洲研发了现代技术与传统品牌文化相融合的产品。融入文化与情感的创意设计技术属于多学科交叉结合的新技术,其关键技术主要有:创意认知与协同设计技术,情感表达与评价技术,文化品牌、文化构成及多元文化融合设计技术等。
航空航天设备、大型交通运输工具、精密制造和加工设备、成套物料处理过程设备、工程机械、微纳机械、光电通讯设备都是复杂机电系统,掌握复杂机电系统创意、建模、仿真和优化设计技术,必将大幅提升我国重大装备的自主设计能力和我国机械工业的技术创新能力。
20世纪90年代,计算机辅助设计、计算机辅助工程、计算机辅助制造、产品数据管理(C3P:CAD/CAE/CAM/PDM)技术在国际工业界普及,相关软件成了产品建模、仿真、优化不可缺少的工具。近10年来,为适应复杂机电产品的设计需求,C3P发展成为M3P,即多体系统(Multibody System)动态设计、多学科协同(Multi-discplines colaberative)设计、基于本构融合的多领域物理建模(Multi-domain physical Modeling)及全生命周期管理(PLM)技术组成了当今计算机辅助产品建模、仿真、优化及管理的新一代技术特征。
以信息物理融合为标志的复杂技术系统,实际上是计算进程与物理进程的统一体,是集计算、通信与控制于一体的新一代智能系统。欧洲学者研发的多领域统一建模语言Modelica具有领域无关的通用模型描述能力,能够实现复杂系统的不同领域子系统模型间的无缝集成。以美国为首的领域学者提出了信息-物理系统融合(Cyber-Physical System,CPS),旨在在统一框架下实现计算、通讯、测量以及物理等多领域装置的统一建模、仿真分析与优化。国际多领域物理统一建模协会在Modelica3.0基础上,最近推出多领域物理表达规范Modelica3.3,力图在此基础上支持网络化、分布式、嵌入式系统建模与仿真。我国启动了题为《支持工业嵌入式应用建模与仿真的三维功能样机设计平台》的跟踪性研究计划。
基于CPS的复杂技术系统建模、仿真和优化技术的发展和普及将大大加速汽车、航空航天、国防、工业自动化、精密仪器、重大基础设施等领域装备的转型升级,不断提高其市场竞争力;将催生出众多具有计算、通信、控制、协同和自治性能的功能创新产品,甚至产生新的行业。
2 零件精确成形技术
零件精确成形技术是指应用先进的成形工艺、严格的几何尺寸(控形)和内在质量控制(控性)技术,生产高几何尺寸精度、高内在质量的零件或零件毛坯的先进制造技术。零件精确成形技术的先进性体现在:(1)节约材料与能源:材料利用率一般较传统的成形工艺提高20%-40%,冷精锻精确成形可使材料利用率提高到98%以上,精确铸造成形技术也可达到90%以上。精确塑性成形技术大多数是在室温下实施的,免除了加热工序,节约了加热能量,大大减少了零件生产过程的能量消耗。(2)免除或减少成形后续加工:净成形零件的几何形状与尺寸,已全部达到零件的使用要求,成形后即可使用,完全免除后续加工;近净成形产品,关键部位已达到使用要求,不需后续加工,一般可节约加工工时50%以上;精密成形产品,一部分尺寸已满足使用要求,其余部分留有较小的加工余量,一般可减少加工工时30%以上。(3)提高零件的内在质量:成形过程中还同时考虑通过控制温度、压力、流体场、电磁场等外部载荷的施加,使得最终零件达到相应的性能。因此,发展零件精确成形技术,对机械工业节约资源、能源和环境友好,实现可持续发展意义重大。
工业发达国家非常重视零件精确成形技术的发展。上世纪90年代初,美国针对汽车车身生产提出了“2毫米工程”目标,即一辆汽车车身所有覆盖件组装后的累积误差不超过2毫米,显而易见,分配到每一个工件的误差就更小。这一工程的实施,使汽车车身制造水平上了一个新台阶。美国又提出新的目标:到2020年,塑性成形零件加工废屑减少90%,能耗减少25%,成本降低60%。日本、德国等工业发达国家也提出了相应目标。日本、德国是零件精确成形技术发达的国家,冷温精确成形件精度普遍达到8级精度,小型轴承环、小型伞齿轮已达到7级精度,冷温精确成形件已占模锻件的25%。我国冷温精确成形件比德日两国低一级,普遍达到9级精度,少量达到8级精度,精确成形件只占模锻件的5%。德日两国精确成形大多数是在全自动生产线上实现,而我国全自动生产线凤毛麟角,差距较大。上世纪80年代在国外发展起来的增量制造技术(也称为快速成形技术)采用CAD数据直接驱动材料进行累加,精确制造原型或零件,使得复杂零件的制造效率大幅度提高。国外的许多企业将增量制造技术应用在复杂结构的制造上。美国通用电气公司在采用金属选区激光烧结技术制造航空发动机的复杂零部件,与传统加工方式相比,增量制造技术可以加工复杂零部件,且更省材料、时间和能源,因此,在航空航天、大型舰船复杂结构零部件制造和维护方面具有优势。
精确成形技术在汽车、航天航空、大型舰船等制造业具有广阔的应用前景,发展先进精确成形技术,对于大批量产品以及多品种、小批量、复杂性零部件的生产具有十分重要的作用,它可大大提高零件的制造水平,并且节约资源和能源。
上一页 1 2 3 下一页